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Observation of waves during oscillatory 
channel flow 
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We have observed steady and oscillatory flow through a two-dimensional channel 
expansion. The experimental results are supported by numerical solutions of the 
unsteady NavierStokes equations. This work was prompted by the recent discovery 
of vortex waves during steady flow past a moving indentation in a channel wall. Our 
work deals with both asymmetric channels, in which we show that vortex waves are 
observed during oscillatory flow with rigid walls, and with symmetric channels, in 
which a vortex street is observed. We believe that the vortex street is not a vortex 
wave, but the result of a shear-layer instability. 

1. Introduction 
It has recently been observed that during steady flow through a two-dimensional 

channel a wave can be produced downstream of a moving indentation (Stephanoff 
et al. 1983, hereinafter referred to as I). The wave has the form of a series of vortices 
alternating on the walls of the channel with the mainstream following a sinuous path 
between the vortices. The existence of a wave in these circumstances seems to have 
been first indicated by Secomb (1979) who derived a linearized Korteweg-de Vries 
equation to describe the motion in the core of the channel for very small amplitude 
wall indentations. It was not realized at that time that a wave of vortices could be 
produced. Bertram & Pedley (1982) observed impulsively started flow past a fixed 
channel expansion, concentrating mainly on the separated region which occurred in 
the lee of the expansion. Without realizing i t  then, they also observed a wave of 
vortices (their figure 10) but attributed them to be a vortex ‘street’ due to ‘the 
quasi-steady instability of a velocity profile with an inflexion point ’. The reason for 
the wave of vortices may have been an oscillation in the flux through the channel 
(such oscillations are indicated by their figure 19). Ryzhov & Zhuk (1980), Terentev 
(1981) and Bogdanova & Ryzhov (1983) have concentrated on the free interaction 
wall layers which occur during steady flow past very small amplitude wall oscillations. 
They have shown that the boundary-layer equations they derive can support a 
wavelike solution downstream of the section of moving wall and, most importantly, 
the wave becomes neutrally damped as the frequency of the oscillation approaches 
a critical value. They also have not suggested that the wavelike structure could 
produce a wave of vortices. The wave reported in I appears to be a new form of wave 
motion. As we have shown, it was unexpected and as yet has no complete analytic 
description. The model proposed in I, which is an extension of the work of Secomb 
(1979), does explain some of the observed features of the wave. We propose to call 
the wave of vortices and the associated wavy core flow a vortex wave. 

In this paper we present experimental observations of both steady and unsteady 

t Present address: Schlumberger Cambridge Research, P.O. Box 153, Cambridge CB2 3BE, 
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two-dimensional flow through a rigid walled channel. Our observations are supported 
by numerical solutions of the unsteady Navier-Stokes equations. We find that a 
vortex wave is generated by oscillatory flow in an asymmetric channel. During 
oscillatory flow in a symmetric channel we have observed an asymmetric disturbance 
which results in a wave but we believe that this is an example of a vortex street and 
results from a shear-layer instability. 

Currently there is considerable interest in both steady and unsteady separation in 
two-dimensional channels. Using a multiple deck analysis Smith (1976a, b) considered 
steady flow through a slightly distorted channel. That work has been extended by 
Smith (1977) and Smith & Duck (1980) who have considered larger disturbances. In 
symmetric channels they found that the core should remain undisturbed. It is well 
known that, whilst this is true for small Reynolds numbers, it does not happen for 
larger Reynolds numbers when the symmetric flow is unstable and a bifurcation 
phenomenon occurs. In  unsteady flow there is as yet no comprehensive asymptotic 
description of the flow, although Cowley (1981) has considered some aspects of a flow 
driven by an unsteady pressure gradient. One point worth mentioning is that the 
experiments and calculations described below are for large channel distortion and 
moderate Reynolds number, whereas the theories referred to are for very small 
channel distortion and asymptotically large Reynolds number. It might be thought 
that these represent two extremes which should not be expected to be related. We 
do not agree since Sobey’s (1980) calculation of solutions to the full Navier-Stokes 
equations showed very close agreement to the asymptotic theory of Smith (1976~)  
at a Reynolds number of 75. 

There exists a considerable number of observations of steady flow through a 
channel expansion. Flow over a back-facing step can be found in Goldstein et al. (1970), 
Denham & Patrick (1974) and Armaly et al. (1983). Recent observations of flow 
through a symmetric channel are given by Durst, Melling & Whitelaw (1974), 
Cherdron, Durst & Whitelaw (1978) and John (1984). The main results are that in 
an asymmetric channel the length of the separated region increases linearly with 
Reynolds number, and that in a symmetric channel the symmetric flow becomes 
unstable at a Reynolds number which depends on the expansion ratio: for a 1 : 3 
expansion the critical Reynolds number lies in the range 2040 depending on the 
aspect ratio of the channel. Above that Reynolds number a steady asymmetric flow 
can be observed. The flow is usually explained by a ‘Coanda’ effect whereby the flow 
attached to one wall has a high velocity, and thus a low pressure, and so the 
asymmetric flow can be maintained by the cross-channel pressure gradient. 

There are two fluid-dynamic parameters which characterize an oscillatory flow : the 
Reynolds and Strouhal numbers. If the minimum channel half gap is h, the flux 2hU, 
frequency Q and viscosity u then we define 

hU hs1 
U U 

R e = -  and St =-. 

In steady flow the Strouhal number vanishes. In  both steady and unsteady flow if 
the Reynolds number is small (Re = O(1)) the flow is dominated by viscosity and 
separation does not occur. In the case of oscillatory flow if the Strouhal number is 
large ( X t  = O( 1)) the flow is again dominated by unsteady inertia and viscosity (Sobey 
1980). At moderate Reynolds number (Re = O(l0-100)) and smaller Strouhal 
number, convective inertial effects are important and separation can occur. At  very 
small Strouhal number (St = 0(10-4)) separation is quasi-steady whilst at inter- 
mediate Strouhal number (St = O(O.Ol-O.0Ol)) separation is not quasi-steady and the 
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main effect observed is the expansion of vortices during the deceleration (Sobey 1983). 
As yet there are no asymptotic studies which are valid at intermediate Strouhal 
number but the numerical solution of the unsteady interactive boundary-layer 
equations by Duck (1984) and Cowley & Tutty (private communication) may allow 
a detailed understanding of the nonlinear effects which are observed to occur in these 
flows. 

In  this paper we describe in $2 the details of our experimental apparatus and then 
present in $53 and 4 our observations of steady and unsteady flow through symmetric 
and asymmetric channels. In  $5 we give numerical solutions of the Navier-Stokes 
equations which support the observations. Finally, in $6 we present a discussion of 
the results and compare them with the existing literature. 

2. Experimental apparatus 
We have observed steady and oscillatory flow in a rectangular channel in a purpose- 

built rig. The apparatus is shown schematically in figure 1. A recirculating pump 
allowed a pressure head to drive steady flow. The flow rate was calculated using a 
measuring cylinder and a stop watch, and a calibration curve was derived for pressure 
head versus flow rate. Oscillatory flow was generated using a rolling diaphragm pump 
driven by a variable-speed motor and adjustable crankshaft. This produced 
approximately sinusoidal fluxes, the deviation in our rig being less than 2 %  
throughout the cycle. Channels were machined from Perspex and their interior 
dimensions were 155 mm length, 15 mm width and with channel gaps which varied 
between 1 and 3 mm. The aspect ratio of the channels varied between 15: 1 and 5: 1 
and approximately two-dimensional flow could be observed across the centreplane of 
the channel. A t  the entrance to each channel was a 10 mm diffuser followed by a 
section 28 mm long and with a constant 1 mm gap, used as a flow straightener 
before the channel changed cross-section. A typical channel is illustrated in figure 2. 
Two geometries were studied in detail : a right-angled expansion and a 45 expansion. 
In each case the expansion was 1 mm. Interchangeable sections allowed both 
asymmetric (1 mm channel gap becoming 2 mm) and symmetric (1-3 mm gap) 
expansions to be observed. 

If the piston area is A,, the total piston displacement k(mm) and the motor 
frequency Q(Hz), then the instantaneous piston displacement can be written 

fk( 1 - cos ~ z Q E ) ,  

where E is the dimensional time. The piston velocity is then 

hQ sin 2xQE, 

and hence the flux through the channel is 

h Q A ,  sin 2nQt. 

If the channel width is w(mm) and minimum gap is 2h(mm), the velocity scale is 

xkQA, 
2hW ’ U =  

and the two governing parameters are 

xkQA, 
2wv 

Re = 
2h2w 

and St =- 
xA, k * 
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FIQURE 1. Schematic diagram of experimental apparatus. 

Side view 

I 

I '  
I 

Top view 

FIQURE 2. Details of channel geometry. 

Note that the Strouhal number, which in the NavierStokes equations distinguishes 
the unsteady term from the nonlinear inertial terms, is dependent only on the piston 
displacement. It is the ratio of the channel lengthscale to the scale of a fluid particle's 
displacement. In  our experiments the piston area was 198 mm2 and the observations 
were carried out in water with viscosity approximately 1 mm2/sec giving 

Re = 20.7kSZ and St = 0.012k-'. 

The frequency SZ was continuously variable between 0.5 and 2.5 Hz and the piston 
displacement had a working range 0.5-10 mm. Thus the parameter range we could 
observe was 0.0012 < St < 0.24 and 5 < Re < 500. In practice the flow became 
unstable at Reynolds numbers above 200 and our experiments were confined to the 
lower end of the Reynolds number range. 

For steady flow the pressure head could be varied between 25 and 100 mm water 
producing a Reynolds number range 7 < Re < 125. A separate calibration was 
carried out for each channel. 

Flow visualization was by means of small reflective particles (Mearlmaid AA, The 
Mearl Corp., N.Y.) illuminated by a 250 W slide projector. Still photographs were 
taken with a motor-driven Nikon camera and ASA400 film (Kodak Tri-X, Ilford 
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HP5). For steady flow, exposures varied betweenf8 at Q s and f 22 at 4 s ,  whilst for 
unsteady flow we usedf5.6 at $ s. The photography was synchronized by a variable- 
position take-off from the flywheel allowing 80 ms delay on the motor drive unit. 

3. Steady flow 
3.1. Asymmetric channels 

We have observed flow past an asymmetric right angled expansion and those results 
are shown in figure 3. At a Reynolds number of 7 a small recirculating region existed 
in the corner. As the Reynolds number was increased to 115 the vortex rapidly grew 
in size and strength. The form was very elongated, showing that the vortex was driven 
by the shear layer present at the sudden expansion. On the opposite wall there was 
no evidence of a vortex but a wall layer was clearly evident slightly downstream of 
the vortex (see figures 3(c) and (d) particularly). The wall layer showed that there 
was a region of significantly reduced shear on the opposite wall in accordance with 
the theory of Smith ( 1 9 7 6 ~ ) .  Armaly et a2. (1983), whose Reynolds numbers are four 
times ours, have observed a vortex on the opposite wall at Reynolds numbers above 
1 0 0 .  We have measured from the photographs the distance from the expansion to 
the reattachment point. The measurements were made by visually estimating where 
reattachment occurred and, as shown in figure 4, there was an approximately linear 
increase in vortex length as the Reynolds number was varied over the range of our 
experiments, given by L, = 2+0.13Re. The data of Armaly et al. agrees well with 
this, our interpretation of their figure 13(a) giving L, = 2+0.14Re. 

3.2. Symmetric channels 

When flow occurs past a symmetric expansion then we would expect separation to 
occur on each wall. At a small Reynolds number (figure 5a)  a small separated region 
existed on each wall and was larger than that observed at the same Reynolds number 
in an asymmetric channel. The vortices were symmetric at that stage but as the 
Reynolds number increased to near 25 the flow became asymmetric and one vortex 
began to grow whilst the other at first became smaller and then remained of constant 
length. In our experiments the dominant vortex could appear on either wall although 
there was a marked predilection for it to appear on one wall only. If, as expected, 
the asymmetric behaviour was caused by an instability of flow in the presence of 
symmetric vortices then small local asymmetries may have triggered the instability 
in one direction most of the time. If the Reynolds number was increased further the 
flow became three-dimensional and ultimately an unsteady instability occurred which 
caused the mainstream to oscillate slowly from side to side. This instability was well 
established when the Reynolds number was 165 (figure 5 4 .  

In an attempt to investigate the assumption of two-dimensional flow in the 
centreplane we observed the particles from the side of the channel. Those results are 
also shown in figure 5 together with the corresponding flow observed in the centreplane 
of the channel. At a small Reynolds number the flow is approximately two-dimensional 
for most of the width of the channel with only small three-dimensional vortices in 
the corners. As the Reynolds number was increased the three-dimensional vortices 
grew although the flow at the centre of the channel remained two-dimensional. This 
remained true until about a Reynolds number of 70 when the entire flow became 
three-dimensional and the line of attachment sloped at a considerable angle to the 
channel (figure 59). Note that there were still two three-dimensional vortices but the 
lower one in the photograph had grown to dominate the flow. If the Reynolds number 
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FIQURE 3. Steady flow through an asymmetric expansion 
(a )  Re = 7 ,  ( b )  Re = 38, (c )  Re = 85, (d )  Re = 115. 

was increased further the three-dimensional vortices a t  first increased in size but then 
lost their structure as the flow became unsteady (figure 5h). These results showed 
that although the symmetric flow was unstable the asymmetric flow that resulted 
was stable and remained two-dimensional for a considerable range of Reynolds 
number. 

If, instead of a right-angled expansion, the channel walls were sloped a t  an angle 
of 45' then a similar pattern was still observed and is shown in figure 6. As the 
Reynolds number was increased the flow, which was initially symmetric, became 
asymmetric and then three-dimensional and unsteady, as can be seen from the 
criss-cross pattern of particle paths in figure 6 (d). 

The length of the separated regions were measured from the photographs and are 
shown in figure 7 for both channels. I n  each case the instability became apparent 
at a Reynolds number of approximately 25 and thereafter one vortex increased 
linearly with Reynolds number whilst the other at first decreased in length and then 
remained of constant size. In each channel, as the Reynolds number increased, the 
sequence of events was as follows. A steady two-dimensional symmetric flow became 
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FIOURE 4. Variation of vortex length (L,) with Reynolds number for an asymmetric channel. 

a steady two-dimensional asymmetric flow and this was followed by a steady 
three-dimensional asymmetric flow. Thereafter an unsteady asymmetric flow devel- 
oped and eventually a three-dimensional turbulent flow existed. 

4. Oscillatory flow 
4.1. Asymmetric channels 

We report here the bulk of our observations which show that in an oscillatory flow 
a wave of vortices can be generated by a change in the channel geometry. The wave 
consists of a series of separated regions, generally alternating on the two walls and 
with the mainstream flowing in a wavy path between the vortices. The flow remained 
two-dimensional and laminar at small Reynolds numbers but became three- 
dimensional and intermittently turbulent at larger Reynolds number. Both the 
Reynolds number and the Strouhal number had a strong influence on the observed 
flow patterns. We defer until later any discussion of the significance or genesis of the 
vortex wave and restrict ourselves here to a description of our observations. 

Firstly, we show in figure 8 the typical flow patterns observed during a cycle. These 
patterns are at a Reynolds number of 80 and Strouhal number of 0.003, approximately 
the mid-point of the region in parameter space in which we could make observations. 
At peak flow, figure 8 (a) ,  separation has occurred in the lee of the channel expansion 
forming what we shall refer fo as the primary vortex, together with a strong 
secondary vortex attached to the opposite wall. The centre of the primary vortex 
was further downstream than in the case of steady flow and the secondary vortex 
was a consequence of the unsteady nature of the flow, since it was not observed during 
steady flow. As the fluid flux was decreased there was a general deceleration of the 
flow, expressed by an adverse pressure gradient throughout the channel. At this stage 
there was an expansion of the vortices, although note that in figure 8 (b) the secondary 
vortex has become smaller and moved upstream some distance, and it was only after 
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FIGURE 5. Steady flow through a symmetric expansion viewed from above and from the side; 
( a )  Re = 15, ( b )  Re = 55, ( c )  Re = 115, ( d )  Re = 165, ( e )  Re = 15, (f) Re = 55, (9)  Re = 115, 
(h )  Re = 165. 
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FIQURE 7. Variation of vortex length on upper and lower walls in a symmetric expansion as 
Reynolds number varies: (a) right-angled expansion, ( b )  45' expansion. 

this time that the secondary vortex began to expand into the mainstream. At  that 
stage the mainstream had a noticeable wave superposed on it. As the flux continued 
to decrease, the wave was accentuated and a sequence of vortices appeared 
downstream (see figure 8c). Continued deceleration caused the vortices to expand, 
those downstream became more noticeable and at the instant of zero flux the channel 
was occupied by a wave of vortices. As the flux reversed, the fluid must have passed 
around the vortices, gradually entraining them into the mainflow until they 
disappeared. Note that the vortices did not move downstream, but as each one 
appeared on the wall it either remained in the same place or moved slightly upstream. 

In order to study the vortex wave systematically we concentrated on taking 
photographs at one time in the cycle whilst the Reynolds and Strouhal numbers were 
varied. In  figures !&11 we show the development of the vortex wave for three Strouhal 
numbers and five Reynolds numbers. The general features are summarized first before 
we comment on interesting details. At a fixed Strouhal number, as the Reynolds 
number was increased the longitudinal extent of the wave rapidly increased. 
Corresponding to this was an increased strength of the individual vortices. Thus the 
damping of the wave was quickly decreased and indeed as shown in figure 11 the flow 
experienced a burst of turbulence during the deceleration. This occurred at what 
might be considered quite a small Reynolds number, Re = 180. We believe these 
photographs support the idea that at  a critical value of the parameters the wave was 
neutrally damped and that led to the turbulent burst (see discussion below). 

If, on the other hand, the Reynolds number is fixed and the Strouhal number 
decreased the longitudinal extent of the wave also increased. More importantly the 
wavelength increased noticeably, showing a strong dependence on the Strouhal 
number. A change in the Reynolds number did not have such a significant effect on 
the wavelength, but examination of the position of the third vortex in figure 10 shows 
a consistent downstream movement. To summarize, the wavelength appeared 
strongly dependent on St but only weakly dependent on Re. 
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FIQURE 8. Observation of a vortex wave through a right-angled expansion (Re = 80, St = 0.003) : 
(a) t = 0.25, (a) t = 0.39, (c) t = 0.42, (d) t = 0.44, (e) t = 0.47, (f) t = 0.5, (9)  t = 0.53. 
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FIGURE 9. Flow at a fixed time oft = 0.42 and St = 0.004 as the Reynolds number varies: 
(a)  Re = 45, ( b )  Re = 60, ( c )  Re = 75, (d )  Re = 90, ( e )  Re = 105. 

There are some details worthy of specific note. In figure 9 (d) there is a connected 
double vortex. The secondary vortex has split into two and that appeared to inhibit 
separation on the upper wall where only a small vortex has formed. Further 
downstream on the upper wall a larger (and presumably stronger) vortex formed. This 
demonstrated the delicate bifurcation phenomenon which can exist in separated flows 
and also that the observed amplitude of the vortex wave need not decrease 
monotonically with distance along the channel. Vortex splitting can also be seen in 
figure 11 (c) in the third vortex on the upper wall. The shape of the vortices appears 
to be closer to elliptical than circular and during the deceleration the semi-major axis 
rotated until i t  was at a considerable angle to the mainflow direction. This can be 
seen for example in figure 11, third and fourth vortices. The rotation of the vortices 
makes possible further separation on the wall and under the existing vortex. Note 
that in vortex splitting two co-rotating vortices form whilst separation at the rear 
of an existing vortex would produce a counter-rotating vortex. 
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We have observed the flow from the side of the channel so as to examine any 
three-dimensional effects which may have been present. In  figure 12 we show 
photographs a t  two Strouhal numbers and two Reynolds numbers each at peak flow 
and during the deceleration. In  each case a three-dimensional corner vortex was 
present and increased in size when the Reynolds number increased or the Strouhal 
number decreased. The photographs were taken by illuminating the upper half of the 
channel (i.e. behind the step) and they show the primary vortex followed by a band 
of high shear on the wall opposite the secondary vortex. It is clear that the flow near 
the centre of the channel was two-dimensional at peak flow for a wide range of Re 
and St (figure 12(a, c, e,f)) .  During the deceleration that was not true and at high 
Re a turbulent burst appeared, as can be seen from the striations of figure 12(g) in 
the third vortex. Note that flow in the primary vortex near the centre of the channel 
still appeared to be two-dimensional and laminar. 

If, instead of a right-angled expansion, a 45" expansion occurred then the global 
details changed little. This can be illustrated by the vortex wave during the 
deceleration for two Strouhal numbers in that geometry (figures 13 and 14). In  
figure 13, when the Strouhal number was St = 0.003, the lateral extent of the wave 
grew rapidly with increased Reynolds number and again vortex splitting was 
apparent (figure 13(d)). In  figure 14, when St = 0.002, a turbulent burst again is 
produced, but now the Reynolds number for that event has decreased compared to 
that for the same event during flow through a right-angled expansion. This was 
contrary to our expectations since we would have thought that the sudden expansion 
would have promoted turbulence at a lower Reynolds number than the relatively 
slow 45" expansion. We can offer no explanation of this observation but note that the 
same is found in a symmetric expansion (see $4.2 below). 

4.2. Symmetric channels 
We have observed oscillatory flow in a symmetric channel and an asymmetric flow 
occurred during the deceleration. In figure 15 we show the flow during one cycle. A t  
the beginning of the cycle there was some residual motion from the previous half- 
stroke. That appeared to have the form of two slowly moving layers, one adjacent 
to each wall. A t  peak flow (figure 15b) a vortex had formed on each wall and the 
vortices appeared to be symmetric. Further downstream, though, an asymmetric flow 
had been established with the generation of a small vortex on each wall and the 
appearance of a wave in the mainflow. During the deceleration the wave grew and 
the primary vortices became asymmetric. More vortices appeared further downstream. 
Continued deceleration increased the size of the vortices and the longitudinal extent 
of the wave. A new phenomenon had appeared and that was the movement of the 
vortices downstream (see figure 15(c, d), primary vortex on the upper wall). In  the 
asymmetric channels there appeared to be no movement of the vortices downstream 
after they had formed: indeed there was a tendency for them to move upstream. 
Further splitting of the vortices occurred as can be seen in figure 15(d, e), in the 
primary vortices. 

If the Strouhal number was fixed and the Reynolds number increased the result 
was not identical with that observed in the asymmetric channel. At first, the 
longitudinal penetration of the vortex wave seems greater in the symmetric channel, 
as can be seen by comparing figure 16 with figure 10. The vortices appear stronger 
and the turbulent burst during the deceleration occurred at  a lower Reynolds number 
and a higher Strouhal number than in the comparable asymmetric expansion. 
Examination of figure 16(b-e) shows that the wave did not attain the longitudinal 
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FIGURE 12. Observation of flow from the side of channel: Re = 80, St = 0.003 (a) t = 0.25, 
( b )  t = 0.42; Re = 120, St = 0.003, ( e )  t = 0.25. ( d )  t = 0.42; Re = 120, St = 0.002; ( e )  t = 0.25; 
(f) 0.42; Re = 150, St = 0.002; (9)  t = 0.25, ( h )  t = 0.42. 
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extent of that in an asymmetric channel, and the increasing intensity of the turbulent 
burst occurred with decreased longitudinal extent of the wave. Recalling that it was 
the fluid flux that was decreasing, this observation suggests that the vortex wave 
observed in a symmetric channel is a dissipative process enabling the fluid to 
eliminate excess kinetic energy as the flux decreases. 

If a symmetric 45' expansion is used (figure 17), again a wave was observed, but 
now the turbulent burst occurred a t  an even lower Reynolds number than in the 
right-angled symmetric expansion. In  this channel there was also a contraction of 
the longitudinal extent of the turbulent burst as the Reynolds number increased. 

5. Calculated flow patterns 
We have calculated the oscillatory flow in a two-dimensional channel by solving 

the unsteady Navier-Stokes equations using a finite-difference scheme. A description 
of our method of solution has been given elsewhere (Sobey 1980, 1982) and we only 
repeat a few details here. We assumed that we were dealing with flow in a 
longitudinally periodic channel, in this case one whose periodic length was much 
greater than the lateral width of the channel. The assumption of spatial periodicity 
allows the boundary conditions applied to be exact since the solution can be iterated 
until the upstream and downstream values of the stream function match. This device 
eliminated the need to use approximate upstream conditions and the solution did not 
have to be stopped when reversed flow occurred near the downstream boundary. The 
stream function and vorticity form of the equations were put into finite-difference 
form by using upwind differencing and a Dufort+Frankel two time-level substitution. 
A fine mesh was used near the boundaries and a coarser one near the centre of the 
channel. Altogether some 7100 mesh points were distributed through the computa- 
tional region and a time step of 0.001 to 0.0005 was typical. 

The solution was calculated for periodic flux through the channel (q = 2 sin2xt) 
and the flow started from rest. In  the first time step the flow was potential except 
at the walls, where thin layers of vorticity were represented by non-zero wall 
vorticity, but zero vorticity in the interior of the channel. Our past experience has 
been that when the flow is dominated by viscosity (i.e. Re very small or St large) the 
perturbation caused by the starting condition is then considerable and the calculation 
of several cycles is necessary to obtain a time-periodic solution. When the flow is 
dominated by inertial effects the initial perturbation generally became negligible 
during the initial acceleration so that the second half-cycle exemplified the time- 
periodic solution and the deceleration period in the first half-cycle was a reasonable 
representation of the flow during subsequent periods of deceleration. The rapid decay 
of starting transients is consistent with our experimental observations. 

The numerical results we present support the experimental observations but do 
not form a comprehensive study of the flows we have observed. We hope to produce 
such a study at a later date. The calculations are for a sinusoidal expansion at one 
end and a similar contraction at the other end. Thus if ( x ,  y) are Cartesian coordinates 
non-dimensionalized by half the minimum channel gap (see Sobey 1982) the 
boundaries of the channel were described by 

1+t(D-2) , O < X < L , ,  L - L , < X < L ,  

D--1, L, < x < L-L,,  

and y = - 1  
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for an asymmetric channel, and for a symmetric channel both walls had a similar 
displacement. The numerical values used were L = 40, L, = 4 and D = 4. The 
calculations were performed on Bristol University’s ‘Multics ’ system and a single 
half-cycle required approximately six hours C.P.U. time. It was apparent from the 
calculations that the contraction at the end of the channel section could strongly 
influence the flow development and we hope that subsequent numerical studies will 
be able to deal with very much larger values of the channel length L and also steady 
flow. 

5.1. Asymmetric channels 
We show in figure 18 the streamlines calculated during the initial half-cycle when 
Re = 125 and St = 0.01. It can be seen that at peak flow a vortex exists on both walls. 
The flow cannot then be quasi-steady since our steady-flow observations did not show 
a vortex on the lower wall. As the flow decelerates (figure 18b) the size of the vortices 
increases and the reattachment point moves downstream. Then a separate detached 
region appears on the upper wall (figure 18c) and a third vortex forms. Another 
notable feature is the rapid downstream movement of the point of reversal of wall 
shear. This occurs on both the upper and lower walls and the flow downstream of 
the vortices is parallel, but with a thin reverse-flow layer at each wall. A t  t = 0.45 
(figure 18d)  a noticeable wave has appeared as the core flow passes between the 
growing vortices. This process continues until at the instant of zero flux (figure M e )  
there remain only the vortices with a wavy dividing streamline between them. 
Reversal of the flux forces the fluid to move around the existing vortices (figure 18f ). 
These patterns should be compared with figure 8 where the same principal features 
were observed. 

If the Strouhal number is fixed and the Reynolds number increased then the 
wavelike nature of the flow patterns becomes more pronounced. In  figure 19 we show 
calculations for St = 0.005 at a fixed time t = 0.45, and for Reynolds numbers 
between 75 and 150. It can be seen that there appears to be little change in the size 
of the vortices, in agreement with the observed flow patterns. In  figure 19(d) the 
vortex on the lower wall appears to be displaced upstream and there is a suggestion 
that vortex splitting has occurred on the upper wall. Note also that the calculations 
are a t  t = 0.45 whilst the observations were nominally at t = 0.43. This is because 
the time of exposure of the film during the experiments was & s  and so the 
observations are actually an ‘integrated’ view during t = 0.43 to t = 0.46, the exact 
length of time depending on the piston frequency. 

If the Reynolds number is fixed at Re = 125 and the Strouhal number decreased, 
the calculations again show close agreement with the qualitative features of the 
observations. In figure 20 the size of the vortices increases markedly with decreasing 
Strouhal number. This is to be expected since decreasing Strouhal number corresponds 
to increasing particle displacement and that should produce longer and stronger 
vortices. 

5.2.  Symmetric channels 
When solving the Naviedtokes equations, either numerically or analytically, the 
existence of symmetry can be used to reduce the size of the problem. In numerical 
solutions the area is smaller and, in the case of a symmetric channel, only one half 
the area need be considered. The symmetry is imposed by insisting that the channel 
centreline is a streamline. This will preclude the calculation of asymmetric flows 
regardless of whether such flows are stable or unstable. When the full channel is 
considered, although the boundary conditions may be symmetric, the calculation of 
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FIGURE 18. Calculated streamlines through an asymmetric channel, Re = 125, St = 0.01 : 
(a) t = 0.25, ( b )  t = 0.35, (c) t = 0.40, (d) t = 0.45, (e) t = 0.5, (f) t = 0.52. 

asymmetric flows is possible. In  order to  confirm that our calculations are of an 
asymmetric flow and not the result of numerical instabilities in the method of solution 
we have performed one calculation with double the number of mesh points. An 
asymmetric flow was obtained but with the asymmetry in the opposite direction. This 
result shows that the flows we have calculated are indeed true solutions of the 
Navier-Stokes equations and not the result of fine details in our method of solution. 
Note that where two stable asymmetric solutions and one unstable symmetric 
solution exist the particular asymmetric solution which the numerical scheme 
calculates depends on the domain of attraction of each of the stable solutions. Since 
all numbers have finite representation on a computer the initial conditions used 
numerically will place the initial solution in the domain of attraction of one solution 
in a manner which cannot be predicted in advance and which may alter as the fine 
details of the numerical scheme are varied. 

I n  figure 21 we show the flow patterns in a symmetric channel for Re = 125 and 



Observation of waves during oscillatory channel $ow 

(a) Re = 75 (a) Re = 75 

(c) Re = 125 

(d )  Re = 150 

FIGURE 19. Calculated streamlines at a fixed time t = 0.45 and St = 0.005. (a) Re = 75, 
( b )  Re = 100, ( c )  Re = 125, (d )  Re = 15. 

(a) st = 0.01 

a --. -- 
(b)  SI = 0.005 

- -- 
(c) st = 0.004 
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(d )  St = 0.003 

FIGURE 20. Calculated streamlines at a fixed time t = 0.45 and Re = 125: (a) A"t = 0.01, 
( b )  St = 0.005, (c) St = 0.004, ( d )  St = 0.003. 

St = 0.01. In this case the flow remains symmetric throughout the cycle. A pair of 
vortices form early in the acceleration and grow in longitudinal extent during the rest 
of the acceleration and the deceleration. We have measured the longitudinal extent 
of the vortices and that length is a linear function' of the time integral of the flux 
(i.e. the distance that a fluid particle would have been displaced if there were a 
uniform velocity across the channel). This demonstrates that once the vortices are 
formed they are convected with a velocity which is somewhat less than the mean flow. 
This agrees with our observations and is a significant difference between flow in a 
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FIGURE 21. Calculated streamlines in a symmetric channel, Re = 125, St = 0.01 : (a) 1 = 0.25, 

( b )  t = 0.35, (c) t = 0.40, ( d )  t = 0.45, (e) t = 0.5, (f) t = 0.52. 

symmetric channel and flow in an asymmetric channel, where individual vortices are 
not convected by the flow once they have formed. 

If the Strouhal number is lowered to St = 0.005 the flow remains symmetric during 
the initial part of the acceleration. As the vortices are convected downstream an 
asymmetric disturbance appears and as the vortex on the upper wall bulges in the 
centre, the vortex on the lower wall bulges at each end. This is shown in figure 22(c). 
Continued deceleration accentuates this effect and the vortices on each wall split, with 
a wave appearing in the core of the channel. When the flux vanishes we have a 
system of vortices alternating on each wall with a wavy dividing streamline. These 
calculations should be compared with figure 15. It is apparent that  the formation of 
a wave in the symmetric channel is not attributable to the mechanism which 
produced the vortex wave. In  an asymmetric channel the vortex wave results from 
a coupling of the lateral pressure gradient to the longitudinal velocity shear (see I). 
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FIGURE 22. Calculated streamlines in a symmetric channel, Re = 125, St = 0.004: (a) t = 0.25, 
( b )  t = 0.35, (c) t = 0.40, (d )  t = 0.45, (e) t = 0.5, (f) t = 0.52. 

In  the symmetric channel the wave appears to be the result of an instability during 
the deceleration of the shear layer between the two vortices as they are convected 
downstream. The wave is the result of the two initial vortices being split into parts. 
In  the asymmetric channel the vortex wave is not produced by the splitting of 
vortices, although the vortices which make up the vortex wave may themselves split. 
Clearly there is much we do not yet understand about this matter. 

6. Discussion 
6.1. Steadyf iw 

Our observations of steady flows agree extremely well with the literature. In  an 
asymmetric channel the linear increase in vortex length is well known. In  the case 
of a symmetric channel previous observations by Cherdron et al. (1978) and Durst 
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et al. (1974) have shown the existence of asymmetric flow and also that the 
asymmetries are observed at  the lowest Reynolds number when the expansion ratio 
is 1 : 3. The limiting length of the smaller vortex appears to be a new observation and 
our observation from the side of the channel sheds some new light on the breakdown 
from two- to three-dimensional motion. The value of the Reynolds number at  which 
asymmetries appear is in close agreement with their observations. Most recently John 
(1984) has studied the stability of the symmetric flow. The basic problem of 
determining when non-unique solutions to the Navier-Stokes equations occur 
remains unresolved. Smith (1976a, b) has shown how the symmetric state can be 
described asymptotically. In Smith (1977) the flow far upstream of a disturbance (in 
that case asymmetric) was considered as an eigenfunction problem in a parallel 
channel. He showed that an eigensolution could be found in the upstream region but, 
as the disturbance was approached, a singularity in the solution developed and he 
did not attempt to carry the numerical solution past the point of the singularity, 
although some properties of the singularity were investigated. In a symmetric 
channel, one way for an asymmetry to arise is via an eigensolution as in Smith (1977). 
Such a solution would seem to have the correct properties since, as observed by Smith 
(1977), if one wall layer thickens it will cause a thinning of the other wall layer. Thus 
a small asymmetric disturbance might be able to grow from the free interaction of 
the lateral pressure gradient and the longitudinal velocity perturbation. 

6.2. Unsteady pow: asymmetric channels 
Our observations of vortex waves raises the question of how such waves can be 
generated. Firstly, it is worth asking if there is any wavelike structure in the solution 
for steady flow through an asymmetric channel. The asymptotic analysis of such 
flows has been given by Smith (1976a, b). If the channel extends from y = eaHF(ez) to 
y = 2 and a longitudinal coordinate X = EX is used, the solution for the core where 
y = 0(1), is 

where Uo(y) = %( 1 - y) is the unperturbed flow and A ( X )  is an unknown displacement 
function. The equations of motion show that the correct scaling for the case in which 
the viscous boundary-layer thickness and the distortion height are the same is 
E = Re-!. In  the linearized case (H 4 1) a solution is found using Fourier transforms, 
so that if 

u - U0(y)+s2A(4 u;(Y), 2, - - s3A’ (4  UO(Y), 

eikxA(X)dX, 
- 
A(k)  = - 

d 2 n  -a 

then, after solving for the wall layers which occur for y = O(a2) and 1 -y  = O(s2), the 
unknown function A ( X )  is given by 

HF( k) 
2( 1 - <(ik)%) ’ X(k) = - 

roo 
J Ai ( t )  dt 

Ai‘ (0) 
g = -  0 = 1.2879, where 

and we require -in < argk < in for the solution to exist. The displacement 
function is a convolution of P(X)  with tl function whose transform is 1/(1 -c(ik$). 

There are three poles which satisfy the condition -gn < arg k < in. Smith 
(1976b) gave only the pole at k = i5-t; the other two poles are at k = 5-te5Ki114 and 
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k = 6-t e-lsni/l4. Upstream the pole at k = - i6-t gives an exponential decay of order 
exp(g-tX). Downstream there are two contributions, one from an integral on the 
branch cut whose large-X behaviour is O(X-y)  and the second coming from the two 
poles in the upper half-plane whose behaviour is like 

exp 1- (cosfx) 5121 cos [(sinfx) &+fx], 

where we recall that X = Re#z. Thus there is indeed a wavelike structure in the steady 
solution although it decays exponentially downstream. Sobey (1983) has shown that 
for intermediate Strouhal number during a deceleration a separated region will 
expand. One must ask whether the wavelike structure found in the steady solution 
can grow during a deceleration. We also note that the wavelength is only weakly 
dependent on the Reynolds number (as Re#) and that would agree with our 
observations. In the case of small-amplitude oscillations of the wall, Bogdanova & 
Ryzhov (1983) have explored the nature of Tollmien-Schlichting solutions to the 
unsteady free-interaction boundary layers which exist on each wall. Their results are 
extremely interesting for they have found that as the frequency of the wall oscillation 
increases a neutrally damped wave occurs downstream of the section of moving wall 
at a critical frequency. This appears to agree closely with our observations and, if 
correct, would indicate that the genesis of a vortex wave is a damped Tollmien- 
Schlichting wave which the free-interaction equations can support. 

Unfortunately, if we examine the scaling used by Bogdanova & Ryzhov we are 
given reason to pause. Their critical frequency parameter is, in our terms, 
2x Re: St - 5 .  This predicts that as the Strouhal number is decreased the frequency 
at which a neutrally damped wave occurs will increase. In  particular for a Strouhal 
number of 0.002 the critical frequency would be near 9000 Hz whereas we observed 
the neutrally damped wave at  about 2 Hz. Our observations are also that as the 
Strouhal number decreases the Reynolds number for a neutrally damped wave also 
decreases. This suggests, but does not prove, that the genesis of the vortex wave does 
not come from the free-interaction boundary-layer equations. 

An alternative description of vortex waves was proposed in I. That theory was a 
long wavelength one and was somewhat ad hoc but nevertheless several important 
features of the vortex wave were accurately predicted. In  the appendix we extend 
the theory of I to account for varying flux through a rigid-walled channel. We derive 
a linearized Korteweg4e Vries equation as in I but with non-constant coefficients. 
Thus the theory of I can also be applied to our observations. If the longitudinal 
lengthscale is A,  where 1 4 h 4 Re, the time parameter in the theory is AS St. We note 
that the theory of I does not predict a neutrally damped wave as the frequency 
increases and that an extension of that theory to include viscous effects is needed 
to obtain agreement with our observations. 

There is no theory which completely describes the vortex wave. We believe that 
the results of Bogdanove t Ryzhov are very exciting, for they predict a neutrally 
damped wave. That they do not seem to apply to the experiments may not be so 
important. This is because their theory may be valid for very small Strouhal numbers 
where the Reynolds number needed to produce a wave may be asymptotically large 
as St+O. These waves are of Tollmien-Schlichting type and arise within the 
boundary-layer regions adjacent to each wall. As the Strouhal number is increased 
to an intermediate value, new effects become important and i t  is at this stage that 
a vortex wave is observed. The genesis of this wave does not come from within the 
viscous wall layers, but as the theory of I indicates it is inviscid interactions within 
the core flow which produce the wave. Further, in this region of intermediate Strouhal 
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numbers the critical Reynolds number for the onset of the wave may increase as the 
Strouhal number is increased. Since our observations are in the later region our results 
would not then contradict the asymptotic theory. We also know that no asymptotic 
description of intermediate Strouhal number flow has yet emerged and for this region 
the best we can achieve may be along the lines of the ad hoc theory of I. Further 
numerical solutions, both of the nonlinear boundary-layer equations and the full 
Naviedtokes equations, will shed considerable light on how a vortex wave can be 
generated and on unsteady separation. 

Appendix. Description of inviscid core flow 
The theory presented in I showed that during oscillations of a channel wall vortex 

waves could be described by a linearized Kortewegae Vries equation. The description 
was obtained by neglecting the viscous wall layers and examining inviscid distur- 
bances of sufficiently long wavelength. The analysis can be carried out because the 
undisturbed velocity profile is parabolic. Critical layers occur a t  the walls and their 
location means that viscous effects are not important at  the level for which inviscid 
disturbances occur. We show here that the theory of I can be extended to the case 
of unsteady flow through a rigid-walled channel. 

Suppose that far upstream the channel has width 2h and that variation of the 
channel width occurs over a length Ah. An incompressible fluid of density p and 
viscosity v flows through the channel with flux cj = 2hUq(Q€). The coordinates, 
pressure and velocities are non-dimensionalized by 

( 2 , @ ,  €, 9, a, 3) - (AhX, hy, Q-'t, pU2p,  UU, SUV), 

where we define 

The equations of motion are 

6 = A-1. 

U,+UY = 0, 

au 
at 

ASt -+uu,+vuzl = -p ,+ARe-lV2u,  

au sst -+62(uv,+vvy) at = -py+6Re-1V2u,  

where 

The boundary conditions are that, far upstream, u, v, and p are prescribed and that 
the flux through the channel is given by the function q(t) .  The unperturbed flow, given 
by u = Uo(y, t ) ,  v = 0, and p = A Re-lxp,(t) ,  is the solution of 

au0 a 2  u, 
at ay2 

R e s t -  = -pO( t )+-  

together with the boundary conditions 

UO(O, t )  = UO(l, t )  = 0, 

and 
ri 
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Assume that the velocities are described by a stream function $, 

and for 8 4 1 expand 
u = $ ~  and v=-$,, 

$ - $0+82$1+P$2+ ..., 
p - ARe-’xpo(t)+Ppl+ .... 
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The pressure scaling is required by &play = O(P). Assume that the walls are 
y = S2F(X) and y = 2-SaG(x), so that the boundary conditions are 

(ii) 

and 

Assuming as in I that 1 4 h 4 Re, the first-order solution is 

$1 = 4x9 4 UO(Y9t) 
Y 

0 
and 

The second-order stream function satisfies the equation 

P, = P,,(XY t )  + A,,(XY t )  J G(S1 t )  ds. 

s t  (A,  uo, + A uo t,) + AA,(U2,, - uo Uoyy) + uo $2xy - Uog $2, 

and if we let o = tF3St - O ( 1 )  then 

where B(x, t )  is an unknown function. 
If we let 

b( t )  = ( Uo J ~ ~ ~ ( @ ~ ~ ~ d s d p ) l  v - 2  

and c7 = ~ o , l y - o ,  

the boundary conditions give 

bA,,, - o(2AA - aA) = c{[(F+ G )  A ] ,  + FF, - GG,). 

This equation is analogous to that obtained in I except that the coefficients a and 
b are now time dependent. 
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